Copied to
clipboard

G = C10×C22⋊C8order 320 = 26·5

Direct product of C10 and C22⋊C8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C22⋊C8, C232C40, C24.3C20, (C22×C8)⋊1C10, (C22×C10)⋊6C8, C222(C2×C40), (C22×C40)⋊5C2, C4.69(D4×C10), (C2×C40)⋊42C22, (C2×C20).535D4, C20.474(C2×D4), C2.1(C22×C40), (C23×C20).8C2, (C23×C4).5C10, (C23×C10).11C4, (C22×C20).47C4, C10.54(C22×C8), (C22×C4).11C20, C23.28(C2×C20), C2.3(C10×M4(2)), (C2×C20).981C23, C10.81(C2×M4(2)), (C2×C10).48M4(2), C20.161(C22⋊C4), C22.9(C5×M4(2)), C22.19(C22×C20), (C22×C20).495C22, (C2×C8)⋊10(C2×C10), (C2×C10)⋊13(C2×C8), (C2×C4).59(C2×C20), (C2×C4).145(C5×D4), C2.3(C10×C22⋊C4), C4.31(C5×C22⋊C4), (C2×C20).461(C2×C4), C10.138(C2×C22⋊C4), C22.32(C5×C22⋊C4), (C2×C4).149(C22×C10), (C2×C10).332(C22×C4), (C22×C10).182(C2×C4), (C22×C4).135(C2×C10), (C2×C10).198(C22⋊C4), SmallGroup(320,907)

Series: Derived Chief Lower central Upper central

C1C2 — C10×C22⋊C8
C1C2C4C2×C4C2×C20C2×C40C5×C22⋊C8 — C10×C22⋊C8
C1C2 — C10×C22⋊C8
C1C22×C20 — C10×C22⋊C8

Generators and relations for C10×C22⋊C8
 G = < a,b,c,d | a10=b2=c2=d8=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 290 in 202 conjugacy classes, 114 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C24, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, C22×C8, C23×C4, C40, C2×C20, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C2×C22⋊C8, C2×C40, C2×C40, C22×C20, C22×C20, C22×C20, C23×C10, C5×C22⋊C8, C22×C40, C23×C20, C10×C22⋊C8
Quotients: C1, C2, C4, C22, C5, C8, C2×C4, D4, C23, C10, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C20, C2×C10, C22⋊C8, C2×C22⋊C4, C22×C8, C2×M4(2), C40, C2×C20, C5×D4, C22×C10, C2×C22⋊C8, C5×C22⋊C4, C2×C40, C5×M4(2), C22×C20, D4×C10, C5×C22⋊C8, C10×C22⋊C4, C22×C40, C10×M4(2), C10×C22⋊C8

Smallest permutation representation of C10×C22⋊C8
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(11 44)(12 45)(13 46)(14 47)(15 48)(16 49)(17 50)(18 41)(19 42)(20 43)(21 35)(22 36)(23 37)(24 38)(25 39)(26 40)(27 31)(28 32)(29 33)(30 34)(51 153)(52 154)(53 155)(54 156)(55 157)(56 158)(57 159)(58 160)(59 151)(60 152)(61 73)(62 74)(63 75)(64 76)(65 77)(66 78)(67 79)(68 80)(69 71)(70 72)
(1 112)(2 113)(3 114)(4 115)(5 116)(6 117)(7 118)(8 119)(9 120)(10 111)(11 44)(12 45)(13 46)(14 47)(15 48)(16 49)(17 50)(18 41)(19 42)(20 43)(21 35)(22 36)(23 37)(24 38)(25 39)(26 40)(27 31)(28 32)(29 33)(30 34)(51 153)(52 154)(53 155)(54 156)(55 157)(56 158)(57 159)(58 160)(59 151)(60 152)(61 73)(62 74)(63 75)(64 76)(65 77)(66 78)(67 79)(68 80)(69 71)(70 72)(81 149)(82 150)(83 141)(84 142)(85 143)(86 144)(87 145)(88 146)(89 147)(90 148)(91 103)(92 104)(93 105)(94 106)(95 107)(96 108)(97 109)(98 110)(99 101)(100 102)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(127 131)(128 132)(129 133)(130 134)
(1 72 140 35 147 49 94 55)(2 73 131 36 148 50 95 56)(3 74 132 37 149 41 96 57)(4 75 133 38 150 42 97 58)(5 76 134 39 141 43 98 59)(6 77 135 40 142 44 99 60)(7 78 136 31 143 45 100 51)(8 79 137 32 144 46 91 52)(9 80 138 33 145 47 92 53)(10 71 139 34 146 48 93 54)(11 101 152 117 65 121 26 84)(12 102 153 118 66 122 27 85)(13 103 154 119 67 123 28 86)(14 104 155 120 68 124 29 87)(15 105 156 111 69 125 30 88)(16 106 157 112 70 126 21 89)(17 107 158 113 61 127 22 90)(18 108 159 114 62 128 23 81)(19 109 160 115 63 129 24 82)(20 110 151 116 64 130 25 83)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (11,44)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,41)(19,42)(20,43)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,31)(28,32)(29,33)(30,34)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(57,159)(58,160)(59,151)(60,152)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,71)(70,72), (1,112)(2,113)(3,114)(4,115)(5,116)(6,117)(7,118)(8,119)(9,120)(10,111)(11,44)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,41)(19,42)(20,43)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,31)(28,32)(29,33)(30,34)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(57,159)(58,160)(59,151)(60,152)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,71)(70,72)(81,149)(82,150)(83,141)(84,142)(85,143)(86,144)(87,145)(88,146)(89,147)(90,148)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,101)(100,102)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(127,131)(128,132)(129,133)(130,134), (1,72,140,35,147,49,94,55)(2,73,131,36,148,50,95,56)(3,74,132,37,149,41,96,57)(4,75,133,38,150,42,97,58)(5,76,134,39,141,43,98,59)(6,77,135,40,142,44,99,60)(7,78,136,31,143,45,100,51)(8,79,137,32,144,46,91,52)(9,80,138,33,145,47,92,53)(10,71,139,34,146,48,93,54)(11,101,152,117,65,121,26,84)(12,102,153,118,66,122,27,85)(13,103,154,119,67,123,28,86)(14,104,155,120,68,124,29,87)(15,105,156,111,69,125,30,88)(16,106,157,112,70,126,21,89)(17,107,158,113,61,127,22,90)(18,108,159,114,62,128,23,81)(19,109,160,115,63,129,24,82)(20,110,151,116,64,130,25,83)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (11,44)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,41)(19,42)(20,43)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,31)(28,32)(29,33)(30,34)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(57,159)(58,160)(59,151)(60,152)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,71)(70,72), (1,112)(2,113)(3,114)(4,115)(5,116)(6,117)(7,118)(8,119)(9,120)(10,111)(11,44)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,41)(19,42)(20,43)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,31)(28,32)(29,33)(30,34)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(57,159)(58,160)(59,151)(60,152)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,71)(70,72)(81,149)(82,150)(83,141)(84,142)(85,143)(86,144)(87,145)(88,146)(89,147)(90,148)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,101)(100,102)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(127,131)(128,132)(129,133)(130,134), (1,72,140,35,147,49,94,55)(2,73,131,36,148,50,95,56)(3,74,132,37,149,41,96,57)(4,75,133,38,150,42,97,58)(5,76,134,39,141,43,98,59)(6,77,135,40,142,44,99,60)(7,78,136,31,143,45,100,51)(8,79,137,32,144,46,91,52)(9,80,138,33,145,47,92,53)(10,71,139,34,146,48,93,54)(11,101,152,117,65,121,26,84)(12,102,153,118,66,122,27,85)(13,103,154,119,67,123,28,86)(14,104,155,120,68,124,29,87)(15,105,156,111,69,125,30,88)(16,106,157,112,70,126,21,89)(17,107,158,113,61,127,22,90)(18,108,159,114,62,128,23,81)(19,109,160,115,63,129,24,82)(20,110,151,116,64,130,25,83) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(11,44),(12,45),(13,46),(14,47),(15,48),(16,49),(17,50),(18,41),(19,42),(20,43),(21,35),(22,36),(23,37),(24,38),(25,39),(26,40),(27,31),(28,32),(29,33),(30,34),(51,153),(52,154),(53,155),(54,156),(55,157),(56,158),(57,159),(58,160),(59,151),(60,152),(61,73),(62,74),(63,75),(64,76),(65,77),(66,78),(67,79),(68,80),(69,71),(70,72)], [(1,112),(2,113),(3,114),(4,115),(5,116),(6,117),(7,118),(8,119),(9,120),(10,111),(11,44),(12,45),(13,46),(14,47),(15,48),(16,49),(17,50),(18,41),(19,42),(20,43),(21,35),(22,36),(23,37),(24,38),(25,39),(26,40),(27,31),(28,32),(29,33),(30,34),(51,153),(52,154),(53,155),(54,156),(55,157),(56,158),(57,159),(58,160),(59,151),(60,152),(61,73),(62,74),(63,75),(64,76),(65,77),(66,78),(67,79),(68,80),(69,71),(70,72),(81,149),(82,150),(83,141),(84,142),(85,143),(86,144),(87,145),(88,146),(89,147),(90,148),(91,103),(92,104),(93,105),(94,106),(95,107),(96,108),(97,109),(98,110),(99,101),(100,102),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(127,131),(128,132),(129,133),(130,134)], [(1,72,140,35,147,49,94,55),(2,73,131,36,148,50,95,56),(3,74,132,37,149,41,96,57),(4,75,133,38,150,42,97,58),(5,76,134,39,141,43,98,59),(6,77,135,40,142,44,99,60),(7,78,136,31,143,45,100,51),(8,79,137,32,144,46,91,52),(9,80,138,33,145,47,92,53),(10,71,139,34,146,48,93,54),(11,101,152,117,65,121,26,84),(12,102,153,118,66,122,27,85),(13,103,154,119,67,123,28,86),(14,104,155,120,68,124,29,87),(15,105,156,111,69,125,30,88),(16,106,157,112,70,126,21,89),(17,107,158,113,61,127,22,90),(18,108,159,114,62,128,23,81),(19,109,160,115,63,129,24,82),(20,110,151,116,64,130,25,83)]])

200 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I4J4K4L5A5B5C5D8A···8P10A···10AB10AC···10AR20A···20AF20AG···20AV40A···40BL
order12···222224···4444455558···810···1010···1020···2020···2040···40
size11···122221···1222211112···21···12···21···12···22···2

200 irreducible representations

dim111111111111112222
type+++++
imageC1C2C2C2C4C4C5C8C10C10C10C20C20C40D4M4(2)C5×D4C5×M4(2)
kernelC10×C22⋊C8C5×C22⋊C8C22×C40C23×C20C22×C20C23×C10C2×C22⋊C8C22×C10C22⋊C8C22×C8C23×C4C22×C4C24C23C2×C20C2×C10C2×C4C22
# reps142162416168424864441616

Matrix representation of C10×C22⋊C8 in GL4(𝔽41) generated by

25000
04000
0010
0001
,
40000
04000
0010
002740
,
1000
0100
00400
00040
,
40000
0300
002739
003714
G:=sub<GL(4,GF(41))| [25,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,40,0,0,0,0,1,27,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,3,0,0,0,0,27,37,0,0,39,14] >;

C10×C22⋊C8 in GAP, Magma, Sage, TeX

C_{10}\times C_2^2\rtimes C_8
% in TeX

G:=Group("C10xC2^2:C8");
// GroupNames label

G:=SmallGroup(320,907);
// by ID

G=gap.SmallGroup(320,907);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,560,589,124]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽